GA-Based Adaptive Window Length Estimation for Highly Accurate Audio Segmentation
نویسندگان
چکیده
منابع مشابه
Adaptive Segmentation with Optimal Window Length Scheme using Fractal Dimension and Wavelet Transform
In many signal processing applications, such as EEG analysis, the non-stationary signal is often required to be segmented into small epochs. This is accomplished by drawing the boundaries of signal at time instances where its statistical characteristics, such as amplitude and/or frequency, change. In the proposed method, the original signal is initially decomposed into signals with different fr...
متن کاملEMG Amplitude Estimation with Adaptive Smoothing Window Length
Typical EMG amplitude estimators use a fixed window length for smoothing the amplitude estimate. When the EMG amplitude is dynamic, varying the smoothing length as a function of time can produce a higher quality amplitude estimate. This paper develops and investigates (in simulation and experimentally) a new technique for adaptive window length estimation. The simulations suggest that the "best...
متن کاملSegmentation-Based Adaptive Support for Accurate Stereo Correspondence
Significant achievements have been attained in the field of dense stereo correspondence by local algorithms based on an adaptive support. Given the problem of matching two correspondent pixels within a local stereo process, the basic idea is to consider as support for each pixel only those points which lay on the same disparity plane, rather than those belonging to a fixed support. This paper p...
متن کاملA Segmentation Based Variational Model for Accurate Optical Flow Estimation
Segmentation has gained in popularity in stereo matching. However, it is not trivial to incorporate it in optical flow estimation due to the possible non-rigid motion problem. In this paper, we describe a new optical flow scheme containing three phases. First, we partition the input images and integrate the segmentation information into a variational model where each of the segments is constrai...
متن کاملAn SSVEP-Based BCI with Adaptive Time-Window Length
A crucial problem for the overall performance of steady-state visual evoked potentials (SSVEP)-based brain computer interface (BCIs) is the right choice of the time-window length since a large window results in a higher accuracy but longer detection time, making the system impractical. This paper proposes an adaptive time window length to improve the system performance based on the subject’s on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Multimedia and Ubiquitous Engineering
سال: 2015
ISSN: 1975-0080
DOI: 10.14257/ijmue.2015.10.1.39